§ Tangent planes & the differential of a map (do Carmo § 2.4)

<u>Recall</u>: For a smooth map $f: \mathcal{U} \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$, $P \in \mathcal{U}$,

differential
$$df_p : iR^n \longrightarrow iR^m$$
 Linear map
 $SII \qquad SII$
 $T_p \mathcal{U} \qquad T_{f(p)} R^m$

If f: S, -> Sz is a smooth map between surfaces,

Question : How to define it ?

There are many (but equivalent) ways to define it. We will use curves on surfaces. $\frac{Def^{n}}{T_{p}S}:=\left\{\begin{array}{l} v\in\mathbb{R}^{3}:\\ v\in\mathbb{R}^{3}:\\ st. \quad \alpha(o)=p \text{ and } \alpha'(o)=v\end{array}\right\}$

Example: $S = F^{-1}(a)$ for some regular value $a \in \mathbb{R}$ $P^{\mathbb{C}}$ of a smooth $F: O \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$.

E.g. Sphere $S = S^{2}(r) := \{x^{2}+y^{2}+z^{2}=r^{2}\}$

We now define the differential of a real-valued function on surfaces.

<u>Def</u>²: Let $f: S \rightarrow iR$ be a smooth function on a surface S, and PES. The differential of f at p is a map

$$df_{p} : T_{p}S \longrightarrow \mathbb{R}$$

defined as follows: for each $\lor \in \mathsf{T}_pS$, choose any curve $Q : (-\varepsilon, \varepsilon) \longrightarrow S$ s.t. Q(o) = p, $Q'(o) = \lor$

$$df_{p}(\vee) := \left. \frac{d}{dt} \right|_{t=0} f(\aleph(t))$$

Remark: We need to check that df_p is welldefined (i.e. independent of the choice of α) and that it is a linear map.

Similarly, we can define the differential of a smooth map between surfaces.

<u>Def</u>: Let $f: S_1 \rightarrow S_2$ be a smooth map between surfaces. The differential of f at $p \in S_1$ is a map

$$df_{p}: T_{p}S_{1} \longrightarrow T_{f(p)}S_{2}$$

defined as follows: for each $\vee \in \operatorname{Tp} S_1$, choose any curve $\alpha : (-\varepsilon, \varepsilon) \longrightarrow S_1$ s.t. $\alpha(o) = p$, $\alpha'(o) = \vee$ let $\beta = f \circ \alpha : (-\varepsilon, \varepsilon) \longrightarrow S_2$ with $\beta(o) = f(p)$

$$df_{p}(\vee) := \beta'(\circ) \in T_{f(p)}S_{2}$$

<u>Remark</u>: We need to check that d_{fp} is welldefined (i.e. independent of the choice of α) and that it is a linear map between the tangent planes.

Recall that T_pS and $df_p: T_pS_1 \longrightarrow T_{f(p)}S_2$ are defined using curves on surfaces:

$$T_{p}S := \left\{ v \in \mathbb{R}^{3} \mid \exists d: (-\varepsilon, \varepsilon) \rightarrow S \text{ s.t.} \right\}$$

$$d(o) = p, d'(o) = v$$

and $df_{p}(\alpha'(o)) := (f \cdot \alpha)'(o)$ well-defined? linear? <u>Lemma:</u> If $X : \mathcal{U} \in \mathbb{R}^{2} \longrightarrow S$ is <u>ANY</u> parametrization s.t. $X(q) = P \in S$, then

$$T_{P}S = dX_{P}(\mathbb{R}^{2}) = span \left\{ \frac{\partial X}{\partial u}, \frac{\partial X}{\partial v} \right\}$$

Proof: Take any $\forall \in T_{P}S$, by definition $\exists \ \alpha : (-\epsilon, \epsilon) \rightarrow S$ s.t. $\alpha (0) = p$, $\alpha'(0) = v$ Restricting $\epsilon > 0$ small if necessary, we can assume that α lies completely inside the coordinate nbd. of X $\Rightarrow \exists \ \beta : (-\epsilon, \epsilon) \rightarrow u \in \mathbb{R}^{2}$ s.t. $\alpha = X \circ \beta$ By Chain Rule, $v = \alpha'(0) = dX_{q}(\beta'(0))$ $\in dX_{q}(\mathbb{R}^{2})$ Even more explicitly, we write

$$\beta(t) = (u(t), v(t)), t \in (-1, 2)$$

Then, by Chain Rule,

$$V = \alpha'(o) = \frac{d}{dt} \Big|_{t=0} X(u(t), v(t))$$

= u'(o) $X_{u} \Big|_{q} + v'(o) X_{v} \Big|_{q}$
E span { X_{u}, X_{v} }

Þ

Remark: 1) Since $T_{p}S$ is defined independent of the choice of parametrizations, if X and X' are two parametrizations of S covering p, we have

$$T_{p}S = Span \{X_{u}, X_{v}\} = Span \{X'_{u'}, X'_{v'}\}$$

2) We will often write a tangent vector as

$$\vee = a \frac{\partial}{\partial u} + b \frac{\partial}{\partial v}$$

as directional derivative $V(f) := a \frac{\partial f}{\partial u} + b \frac{\partial f}{\partial v}$ where $f \in C^{\infty}(S)$ Note: Let $f: S \rightarrow iR$ be a smooth function. To see that $df_p: T_pS \rightarrow R$ is well-defined & linear. Let $V \in T_pS$, then \exists unique $a, b \in iR$ s.t. $V = a X_n + b X_v$ for some fixed parametrization X(k,v).

Write $\tilde{f}(u,v) = fo X(u,v)$. Then, using notation as in previous lemma

$$df_{p}(v) := \frac{d}{dt}\Big|_{t=0} f(\alpha(t)) = \frac{d}{dt}\Big|_{t=0} \tilde{f}(\vec{s}(t))$$
$$= \alpha \frac{\partial \tilde{f}}{\partial u}\Big|_{g} + b \frac{\partial \tilde{f}}{\partial v}\Big|_{g}$$

Thus, df_p is well-defined & linear. Now, if $f: S_1 \rightarrow S_2$ is a smooth map between surfaces. Take any parametrization of S_1 near p:

$$X: \mathcal{U} \subseteq \mathbb{R}^2 \longrightarrow S_{\mathfrak{U}}$$

$$\overset{\mathcal{U}}{\overset{\mathcal{U}}{\mathfrak{q}}} \qquad \overset{\mathcal{U}}{\overset{\mathcal{U}}{\mathfrak{p}}} = \mathfrak{X}(\mathfrak{q})$$

By previous lemma,

$$dX_{q}: \mathbb{R}^{2} \xrightarrow{\cong} \mathbb{T}_{p} S_{1} \subseteq \mathbb{R}^{3}$$

$$\xrightarrow{\text{isom orphism}} (dX_{q})^{-1}: \mathbb{T}_{p} S_{1} \longrightarrow \mathbb{R}^{2} \text{ exists.}$$

Then one can check easily:

$$df_{p} = d(f \circ X)_{q} \circ (dX_{q})^{T}$$

$$\mathbb{R}^{2} \rightarrow T_{f(p)}S_{2} \in \mathbb{R}^{3} \quad T_{p}S_{1} \rightarrow \mathbb{R}^{2}$$

$$(well-defined \& linear$$

Properties of differential:

- (1) Chain Rule: $d(g \circ f)_p = dg_{f(p)} \circ df_p$
- (2) Inverse Function Theorem
 Any smooth f: S₁ → S₂ with
 df_p: T_pS₁ => T_fS₂ linear isomorphism
 is a local diffeomorphism near p.
- (3) If $f: S \rightarrow \mathbb{R}^m$ has $df_p = 0$ for all $p \in S$ and S is connected, then $f \equiv constant$.
- (3) If $f: S \rightarrow \mathbb{R}$ has a local max/min at $p \in S$ then $df_p = 0$.

Proof: Exercises!

In other words, all the familiar facts in calculus hold for functions defined on surfaces.